MODELLING OF SPIN-CROSSOVER MOLECULES INTERACTING WITH SUBSTRATES

Carmen J. Calzado

UNIÓN EUROPEA Fondo Europeo de Desarrollo Regional (FEDER) Una manera de hacer Europa

JUNIA DE ANDALUC

CONSEJERÍA DE ECONOMÍA, CONOCIMIENT

EMPRESAS Y LINIVERSIDAD

Fe(II) SCO M-phthalocyanine M-porphyrin

encapsulated

Outline

- Spin-crossover complexes
- SCO on substrates
- Methodology
- [Fe(scorpionate)₂] on Au(111)

SPIN-CROSSOVER COMPLEXES

- Reversible transition bewteen two spin states
- Switching promoted by external stimuli as T, P, hv, E, B, presence of an analyte...
- Fe(II) d⁶ complexes, with (quasi)-octahedral core FeN₆

$S=0 LS \rightarrow S=2 HS$

$LS \rightarrow HS$ spin transition accompanied by changes in:

- Fe-N distances (increase of 10%)
 - octahedron volume (increase of 25%)
 - unit cell volume (~ 15%)

- Colour
- UV-vis spectra<math>UV-vis spectra UV-vis spectra Vavelength [nm]

F. Milocco et al. J. Am. Chem. Soc. 2020, 142, 47, 20170

Magnetic susceptibility

• XAS spectra Fe L_{2,3} edge

Gruber et al. J. Chem. Phys. 146, 092312 (2017)

William Nicolazzi^{*}, Azzedine Bousseksou C. R. Chimie 21 (2018) 1060–1074

change in property = output signal molecular switch ON/OFF

Fraction of HS molecules at each temperature γ_{HS}

- Established from experimental data
- Different behaviours:

SPIN-CROSSOVER ON SUBSTRATES

Key points

а

0.8

0.6

0.4

0.2

0.0

50

100

150

Temperature (K)

200

- Maintain integrity of the molecule
- Control position and orientation of molecule on the surface
- Deposition implies size reduction: bulk \rightarrow film \rightarrow single-molecule

Once deposited:

- Change in the transition temperature
- Hysteresis loop reduces /disappears
- Coexistence of HS and LS molecules at low temp
- Suppression of the spin transition
- Electronic coupling between molecule-surface states

9(5) ML

2.0(3) ML 0.69(8) ML 0.35(4) ML

250

 $[Fe(H_2B(pz)_2)_2(bipy)]$

Modification of intermolecular interactions

non-innocent supports

very few SCO molecules candidates for molecular devices

FOR MOST OF THE SYSTEMS THERE IS NO INFORMATION ABOUT

- Interaction molecule/substrate
- Adsorption sites, geometry and energy
- Electronic structure of the molecule
- Hybridization molecule/substrate

OUR AIM

Multiscale theoretical study oriented to

- Provide keys to interpret the properties
- Determine molecule/substrate interaction mechanism ٠
- Find out synergies between molecule and substrate, that can modulate their properties

METHODOLOGY

Wavefunction-based methods

CASSCF/CASPT2/NEVPT2

Isolated molecules

Benchmark calculations Ligand-field parameters LIESST mechanism

DFT-based methods

Molecular and periodic calculations Adsorption sites & energies Density of states, electronic structure STM images – Tersoff /Hamann approx Transport properties - NEGF approx UV-Vis and IR spectra

KEY POINTS:

- Accurate determination of structural changes
- Correct balance of electronic correlation energy:
 LS (closed-shell) versus HS (open-shell)
- Zero-point and thermal corrections $\rightarrow \Delta H$, ΔS
- DFT (functional dependent) and CASSCF/PT2 (expensive) approaches
- Model for the substrate \rightarrow fragment vs periodic approach

Fe(II) -pyrazolylborate SCO deposited on Au(111) surface

Fe-pyrazolylborate Fe^{II}[(Me₂Pz)₃BH]₂

- Neutral complex, first reported in the 60's
- 2015: SCO properties conserved upon sublimation

Thin films of Fe-pz on Si/SiO₂ and quartz by thermal evaporation

- Transition temperatures shifted to lower temp
- Spin transition is not complete at low temperature (~20% HS)
- Light induced spin transition LIESST is preserved

Monolayer Fe-pz/Au(111)

K. Bairagi et al. *Nat. Commun.* **2016**, *7*, 12212 JPCC **2018**, 122, 727

STM and XPS

- Fe-pz on Au(111) is not degraded
- Incomplete SCO transition: mixed spin state at low temperature

Spin-dependent **superstructure** can be observed for specific scanning voltages:

- V= -1.5 V all molecules bright
- V= +0.3 V only one molecule over three brights

Superstructure 3 molecules/unit cell: 2 LS : 1 HS

I-V curves recorded at constant height

Different conductance for HS and LS molecules

Grazing incidence x-ray diffraction (GIXD)

• Epitaxial relationship between Fe-pz monolayer and substrate Fourmental et al. JPC Lett. **2019**, 10, 4103

Anomalous LIESST effect Fe-pz/Ag(111), Au(111), Cu(111)

XAS Fe-pz/ Au(111) 1LS:2HS

Angew. Chem. Int. Ed. 2020, 59, 13341–13346

Our aim: why mixed spin states at low temperature

Benchmark calculations on isolated molecule

 ΔH_{HL} exp: 10.2 kJ/mol

Code	Method employed		HS-LS (kJ/mol)	
MOLCAS		IPEA= 0.25 au	12.1	
	CASPT2	IPEA= 0.4 au	22.1	
		IPEA= 0.5 au	28.3	_CAS(10e, 12MO
ORCA	NEVPT2	Strongly contracted	20.3	_
		Partially contracted	9.7	
	rPBE		10.0	
	rPBE + ZPC	Single molecule	1.3	
	rPBE + D3		52.7	
	rPBE + D3 + ZPC		44.0	_
VASP	PBE		76.3	
	SCAN	Single molecule	74.8	
	revPBE	Periodic conditions	29.7	
	rPBE		18.2	
	rPBE+D3		65.5	

Dispersion corrections \rightarrow large overestimation of HS-LS

Zero-point corrections \rightarrow reduce the HS-LS gap, but expensive for periodic approaches

Use rPBE as alternative to DFT+U

Fe ligand field parameters

Low temp x-ray geometry

Ligand field strength $\Delta_{LS} \sim 2\Delta_{HS}$ ∆R (Fe-N) ~0.2Å

Ab initio ligand field theory (AILFT) SA-CASSCF(6,5) (5Q, 45T, 50S)

FE-PZ MOLECULE/AU(111)

• Adsorption energy is spin-dependent:

LS: -32.2 kJ/mol HS: -25.3 kJ/mol

- rPBE calculations, 1molecule/cell
- periodic conditions, unit cell large enough to avoid intermolecular interactions

Molecule tilted toward surface, B-Fe-B axis forms angle ~20°

• HS-LS gap enhanced once deposited

HS- LS 18.2 kJ/mol

Ligand-metal hybridization LS > HS

CASSCF(10,12)

Fe ligand field \rightarrow energy and composition of Fe 3d-like orbitals

Projected density of states

Close to the Fermi:

- Fe 3d, with **larger hybridization** with ligands for LS than HS
- In line with the strength of the ligand field, stronger for LS than HS
- More spatially extended orbitals for LS → promote stronger interations with Au(111)
- <u>General feature</u> of SCO moleculesubtrate interaction

Fe-pz monolayer/Au(111)

rPBE calculations + ZPE

- 4 layers of gold
- 3 molecules per unit cell
 molecules and upper gold layer relaxed

- LS → HS transition <u>energy lower</u>in presence of <u>intermolecular interactions</u>
- Molecules stabilized by interaction with surface
- Pure LS and mixed LSLSHS almost degenerate → in line with experiments

	LSLSLS	LSLSHS	LSHSHS	HSHSHS
Relative energy (kJ/mol)	Pure LS	33 % HS	66 %HS	Pure HS
3 molecules/Au(111)	0.0	10.9– 11.6	35.2 – 33.1	60.2
ZPE corrected	0.0	1.0 – 1.7	15.5 — 13.4	30.5
3 molecules w/o substrate	0.0	19.1	44.6	73.4

1 molecule/Au(111) HS-LS = 25.1 kJ mol⁻¹ (15.2 kJ mol⁻¹ with ZPE)

Activation barriers for succesive spin transitions on cooling

STM images constant height

K. Bairagi et al. *Nat. Commun.* **2016**, *7*, 12212 Sánchez-de-Armas, Calzado Inorg. Chem. Front. 2022, 9,753

Positive sample voltage electrons TIP \rightarrow sample

V > 0

1/3 HS

2/3 HS

Negative sample voltage electrons sample →TIP

V < 0

Sánchez-de-Armas, Calzado Inorg. Chem. Front. 2022, 9,753

1/3 HS

2/3 HS

Transport properties

Molecular junction scheme

I-V curves at constant height over LS (red) molecule and HS (black) molecule

Montenegro et al. Chem. Eur. J. 2021

Conclusions

- Mixed spin states thermodinamically and kinetically favoured
- Deposition increases HS-LS gap
- Interaction with substrate is spin-dependent: LS > HS
 - Related to the stronger Fe ligand field of LS state
 - Larger ligand-metal hybridization
 - General feature of SCO on Surface

- PDOS explain STM images
- I-V curves correctly reproduced
- Pathway for LIEEST phenomenon

Acknowledgments

- 🗿 Rocío Sánchez de Armas
- \Im David Arias
- 🕗 🛛 Iman Jaber El Lala
- 🕉 🛛 Nicolás Montenegro
- 🕥 Jhon Zapata

🞯 Enrique Burzurí

Talal Mallah

Cyrille Barreteau

- 🔗 Emilio M. Pérez
- 🕑 José Sánchez Costa

MolDev-Q Mag4Dev

GOBIERNO DE ESPAÑA E INNOVAC .

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional (FEDER)

Una manera de hacer Europa

